
2020-08-18

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

Prof. Werner Dietl

© 2020 by Douglas Wilhelm Harder, Hiren Patel and Werner Dietl.

Some rights reserved.

Initialization of and
assignment to local

variables

2
Initialization of and assignment to local variables

Outline

• In this lesson, we will:

– Show how to initialize local variables

– See how to assign a local variable a new value

3
Initialization of and assignment to local variables

Background

• In the previous topic:

– We declared a local variable

 int n;

 char ch;

 std::string name;

 double x;

 bool is_valid;

– The local variable was then given a value by executing:

 std::cin >> variable_name;

4
Initialization of and assignment to local variables

Initialization

• What happens if simply declare an identifier to be a local variable?
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 int n;

 char ch;

 double x;

 bool is_valid;

 std::cout << n << std::endl;

 std::cout << ch << std::endl;

 std::cout << x << std::endl;

 std::cout << is_valid << std::endl;

 return 0;

}

Output:
 32765
 S
 5.17236e-159
 133

2020-08-18

2

5
Initialization of and assignment to local variables

Initialization

• The local variables are stored in main memory

– Whatever 0s and 1s are currently there are those interpreted as
either an integer, a character, a float, or a Boolean value

Output:
 32765
 S
 5.17236e-159
 133

6
Initialization of and assignment to local variables

Initialization

• We can have the local variables be given a default value:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 int n{};

 char ch{};

 double x{};

 bool is_valid{};

 std::cout << n << std::endl;

 std::cout << ch << std::endl;

 std::cout << x << std::endl;

 std::cout << is_valid << std::endl;

 return 0;

}

Output:
 0

 0
 0

7
Initialization of and assignment to local variables

Initialization

• You can also initialize with a different values:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 int n{128};

 char ch{'!'};

 double x{6.62607015e−34};

 bool is_valid{true};

 std::cout << n << std::endl;

 std::cout << ch << std::endl;

 std::cout << x << std::endl;

 std::cout << is_valid << std::endl;

 return 0;

}

Output:
 128
 !
 6.62607e-34
 1

8
Initialization of and assignment to local variables

Initialization

• The default values are the same as these:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 int n{0};

 char ch{'\0'}; // The null character

 double x{0.0};

 bool is_valid{false};

 std::cout << n << std::endl;

 std::cout << ch << std::endl;

 std::cout << x << std::endl;

 std::cout << is_valid << std::endl;

 return 0;

}

Output:
 0

 0
 0

2020-08-18

3

9
Initialization of and assignment to local variables

Initialization

• Programming principle:

 In any general application, all variables must be initialized,

 either with their default value or a value you choose.

 In an embedded system, a variable may be left uninitialized,

 but only with an appropriate comment explaining why.

int register_number; // Uninitialized

 // - will be assigned during an interrupt

10
Initialization of and assignment to local variables

Assignment

• A local variable, once declared and initialized may have a new value
assigned to it:

#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 // Local variable declaration

 int n{42};

 std::cout << "The value of 'n' is " << n << std::endl;

 n = 91;

 std::cout << "The value of 'n' is " << n << std::endl;

 n = 1970;

 std::cout << "The value of 'n' is " << n << std::endl;

 return 0;

}

Output:
 42
 91
 1970

11
Initialization of and assignment to local variables

Assignment

• The = operator is called the assignment operator:

– Do not read

 n = 1984;

 as “n equals 1984,”

 rather, read it as “n is assigned the value 1984.”

12
Initialization of and assignment to local variables

Integers

• On occasion, you may see

 int m{};

 int n{};

 m = n = 10;

• This is the same as:

 n = 10;

 m = 10;

2020-08-18

4

13
Initialization of and assignment to local variables

Summary

• Following this lesson, you now:

– Understand the need for initializing local variables

• Know the default initial values

– Know how to assign a local variable a new value

• The = operator is the assignment operator

14
Initialization of and assignment to local variables

References

[1] Wikipedia,

 https://en.wikipedia.org/wiki/Local_variable

15
Initialization of and assignment to local variables

Acknowledgements

None so far.

16
Initialization of and assignment to local variables

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

https://en.wikipedia.org/wiki/Local_variable
https://en.wikipedia.org/wiki/Local_variable

2020-08-18

5

17
Initialization of and assignment to local variables

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

